Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Unitary -designs are distributions on the unitary group whose first moments appear maximally random. Previous work has established several upper bounds on the depths at which certain specific random quantum circuit ensembles approximate -designs. Here we show that these bounds can be extended to any fixed architecture of Haar-random two-site gates. This is accomplished by relating the spectral gaps of such architectures to those of one-dimensional brickwork architectures. Our bound depends on the details of the architecture only via the typical number of layers needed for a block of the circuit to form a connected graph over the sites. When this quantity is bounded, the circuit forms an approximate -design in at most linear depth. We give numerical evidence for a stronger bound that depends only on the number of connected blocks into which the architecture can be divided. We also give an implicit bound for nondeterministic architectures in terms of properties of the corresponding distribution over fixed architectures. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available December 1, 2025
-
In this work, drawing inspiration from the type of noise present in real hardware, we study the output distribution of random quantum circuits under practical nonunital noise sources with constant noise rates. We show that even in the presence of unital sources such as the depolarizing channel, the distribution, under the combined noise channel, never resembles a maximally entropic distribution at any depth. To show this, we prove that the output distribution of such circuits never anticoncentrates—meaning that it is never too “flat”—regardless of the depth of the circuit. This is in stark contrast to the behavior of noiseless random quantum circuits or those with only unital noise, both of which anticoncentrate at sufficiently large depths. As a consequence, our results shows that the complexity of random-circuit sampling under realistic noise is still an open question, since anticoncentration is a critical property exploited by both state-of-the-art classical hardness and easiness results. Published by the American Physical Society2024more » « less
-
Plausible claims for quantum advantage have been made using sampling problems such as random circuit sampling in superconducting qubit devices, and Gaussian boson sampling in quantum optics experiments. Now, the major next step is to channel the potential quantum advantage to solve practical applications rather than proof-of-principle experiments. It has recently been proposed that a Gaussian boson sampler can efficiently generate molecular vibronic spectra, which are an important tool for analysing chemical components and studying molecular structures. The best-known classical algorithm for calculating the molecular spectra scales super-exponentially in the system size. Therefore, an efficient quantum algorithm could represent a computational advantage. However, here we propose an efficient quantum-inspired classical algorithm for molecular vibronic spectra with harmonic potentials. Using our method, the zero-temperature molecular vibronic spectra problems that correspond to Gaussian boson sampling can be exactly solved. Consequently, we demonstrate that those problems are not candidates for quantum advantage. We then provide a more general molecular vibronic spectra problem, which is also chemically well motivated, for which our method does not work and so might be able to take advantage of a boson sampler.more » « less
-
Santhanam, Rahul (Ed.)Given a local Hamiltonian, how difficult is it to determine the entanglement structure of its ground state? We show that this problem is computationally intractable even if one is only trying to decide if the ground state is volume-law vs near area-law entangled. We prove this by constructing strong forms of pseudoentanglement in a public-key setting, where the circuits used to prepare the states are public knowledge. In particular, we construct two families of quantum circuits which produce volume-law vs near area-law entangled states, but nonetheless the classical descriptions of the circuits are indistinguishable under the Learning with Errors (LWE) assumption. Indistinguishability of the circuits then allows us to translate our construction to Hamiltonians. Our work opens new directions in Hamiltonian complexity, for example whether it is difficult to learn certain phases of matter.more » « less
-
Abstract Recently, several quantum benchmarking algorithms have been developed to characterize noisy quantum gates on today’s quantum devices. A fundamental issue in benchmarking is that not everything about quantum noise is learnable due to the existence of gauge freedom, leaving open the question what information is learnable and what is not, which is unclear even for a single CNOT gate. Here we give a precise characterization of the learnability of Pauli noise channels attached to Clifford gates using graph theoretical tools. Our results reveal the optimality of cycle benchmarking in the sense that it can extract all learnable information about Pauli noise. We experimentally demonstrate noise characterization of IBM’s CNOT gate up to 2 unlearnable degrees of freedom, for which we obtain bounds using physical constraints. In addition, we show that an attempt to extract unlearnable information by ignoring state preparation noise yields unphysical estimates, which is used to lower bound the state preparation noise.more » « less
-
Cross-entropy (XE) measure is a widely used benchmark to demonstrate quantum computational advantage from sampling problems, such as random circuit sampling using superconducting qubits and boson sampling (BS). We present a heuristic classical algorithm that attains a better XE than the current BS experiments in a verifiable regime and is likely to attain a better XE score than the near-future BS experiments in a reasonable running time. The key idea behind the algorithm is that there exist distributions that correlate with the ideal BS probability distribution and that can be efficiently computed. The correlation and the computability of the distribution enable us to postselect heavy outcomes of the ideal probability distribution without computing the ideal probability, which essentially leads to a large XE. Our method scores a better XE than the recent Gaussian BS experiments when implemented at intermediate, verifiable system sizes. Much like current state-of-the-art experiments, we cannot verify that our spoofer works for quantum-advantage-size systems. However, we demonstrate that our approach works for much larger system sizes in fermion sampling, where we can efficiently compute output probabilities. Finally, we provide analytic evidence that the classical algorithm is likely to spoof noisy BS efficiently.more » « less
-
Entanglement is one of the physical properties of quantum systems responsible for the computational hardness of simulating quantum systems. But while the runtime of specific algorithms, notably tensor network algorithms, explicitly depends on the amount of entanglement in the system, it is unknown whether this connection runs deeper and entanglement can also cause inherent, algorithm-independent complexity. In this Letter, we quantitatively connect the entanglement present in certain quantum systems to the computational complexity of simulating those systems. Moreover, we completely characterize the entanglement and complexity as a function of a system parameter. Specifically, we consider the task of simulating single-qubit measurements of k-regular graph states on n qubits. We show that, as the regularity parameter is increased from 1 to n−1, there is a sharp transition from an easy regime with low entanglement to a hard regime with high entanglement at k = 3, and a transition back to easy and low entanglement at k = n−3. As a key technical result, we prove a duality for the simulation complexity of regular graph states between low and high regularity.more » « less
-
We study the properties of output distributions of noisy random circuits. We obtain upper and lower bounds on the expected distance of the output distribution from the “useless” uniform distribution. These bounds are tight with respect to the dependence on circuit depth. Our proof techniques also allow us to make statements about the presence or absence of anticoncentration for both noisy and noiseless circuits. We uncover a number of interesting consequences for hardness proofs of sampling schemes that aim to show a quantum computational advantage over classical computation. Specifically, we discuss recent barrier results for depth-agnostic and/or noise-agnostic proof techniques. We show that in certain depth regimes, noise-agnostic proof techniques might still work in order to prove an often-conjectured claim in the literature on quantum computational advantage, contrary to what has been thought prior to this work.more » « less
An official website of the United States government
